Neo-Inositol is a group of chemically very stable small polar molecules with a variety of properties. It is one of the naturally occurring but rare inositol stereoisomers.
D-myo-Inositol-1,4,5,6-tetrahosphate (sodium salt) (Ins(1,4,5,6)-P4) is one of several different inositol oligophosphate isomers implicated in signal transduction. Production of Ins(1,4,5,6)-P4 by intestinal epithelial cells increases approximately 2-14 fold, depending on the strain and incubation time, following infection with Salmonella.[1] D-myo-Inositol-1,4,5,6-tetraphosphate (sodium salt) (Ins(1,4,5,6)-P4) is one of several different inositol oligophosphate isomers implicated in signal transduction. Production of Ins(1,4,5,6)-P4 by intestinal epithelial cells increases approximately 2-14 fold, depending on the strain and incubation time, following infection with Salmonella. Ins(1,4,5,6)-P4 antagonizes epidermal growth factor (EGF) signalling through the phosphatidylinositol 3-kinase pathway. Ins(1,4,5,6)-P4 (tested as the D L racemic mixture) is ~1,000-fold less potent than Ins(1,4,5)-P3 at initiating Ca2+ release when injected into Xenopus oocytes.[2]
D-myo-Inositol-1,4,6-phosphate (Ins(1,4,6)-P3) is a member of the inositol phosphate (InsP) family that play critical roles as small, soluble second messengers in the transmission of cellular signals. The most studied InsP, Ins(1,4,5)-P3, is a second messenger produced in cells by phospholipase C (PLC)-mediated hydrolysis of phosphatidylinositol-4,5-biphosphate. Binding of Ins(1,4,5)-P3 to its receptor on the endoplasmic reticulum results in opening of the calcium channels and an increase in intracellular calcium. Ins(1,4,6)-P3 (tested as the meso compound) is 9-fold less potent than Ins(1,4,5)-P3 at initiating Ca2+ release when injected into Xenopus oocytes.
The inositol phosphates are a family of mono- to poly-phosphorylated compounds that act as messengers, regulating cellular functions including cell cycling, apoptosis, differentiation, andmotility. D-myo-Inositol-1,5,6-triphosphate is an intermediate compound, produced by the dephosphorylation of various inositol-tetrakisphosphate forms. The triphosphate can be further metabolized to produce inositol-biphosphate mediators. The biological roles of D-myo-inositol-1,5,6-triphosphate remain to be determined.
D-myo-Inositol-4-phosphate (Ins(4)P1) is a member of the inositol phosphate (InsP) molecular family that play critical roles as small, soluble second messengers in the transmission of cellular signals. The most studied InsP, Ins(1,4,5)P3, is a second messenger produced in cells by phospholipase C (PLC)-mediated hydrolysis of phosphatidylinositol-4,5-diphosphate. Binding of Ins(1,4,5)P3 to its receptor on the endoplasmic reticulum results in opening of the calcium channels and an increase in intracellular calcium. Ins(4)P1 can be formed by dephosphorylation of Ins(1,4)P2 by inositol polyphosphate 1-phosphatase or dephosphorylated to inositol by inositol monophosphatase.
Ins(1,4,5)P3 is an isomer of the biologically important D-myo-inositol-1,4,5-triphosphate. Unlike its isomer, Ins(1,4,5)P3 does not evoke a rise in intracellular calcium when added to cells. It is not known if Ins(1,4,5)P3 can act as a competitive inhibitor of biologically-active inositol phosphates.
Ins(1,2)P2 (sodium salt) is one of the many inositol phosphate (InsP) isomers that could act as small, soluble second messengers in the transmission of cellular signals. The most studied InsP Ins(1,4,5)P3, is a second messenger produced in cells by phospholipase C (PLC)-mediated hydrolysis of phosphatidylinositol-4,5-biphosphate. Binding of Ins(1,4,5)P3 to its receptor on the endoplasmic reticulum results in opening of the calcium channels and an increase in intracellular calcium. Ins(1,2)P2 (tested as the D L racemic mixture) is ~1,000-fold less potent than Ins(1,4,5)P3 at initiating Ca2+ release when injected into Xenopus oocytes.
D-myo-Inositol-1,3,4,5-tetraphosphate (Ins(1,3,4,5)-P4) is formed by the phosphorylation of Ins(1,4,5)P3 by inositol 1,4,5-triphosphate 3-kinase. Ins(1,3,4,5)-P4 increases intracellular calcium levels by two distinct mechanisms: opening calcium channels on both the endoplasmic reticulum to release calcium from internal stores and on the plasma membrane to allow the influx of calcium from outside the cell.
The inositol phosphates (IPs) are a family of molecules produced by altering the phosphorylation status of each of the six carbons on the cyclic inositol structure. They act as second messengers, regulating a wide array of cellular functions. D-myo-inositol-1,3,4,6-tetraphosphate(Ins(1,3,4,6)-P4) largely acts an intermediate, serving as substrate for inositol-1,3,4,6-tetraphosphate 5-kinase to produce inositol-1,3,4,5,6-pentaphosphate, or inositol-1,3,4,6-tetraphosphate 2-kinase to give inositol-1,2,3,4,6-pentaphosphate. These inositol pentaphosphates can be further phosphorylated to produce inositol-1,2,3,4,5,6-hexakisphosphate, or phytic acid, which serves diverse roles in eukaryotic tissues. Ins(1,3,4,6)-P4 is a poor activator of the inositol 1,4,5-trisphospate receptor in vitro. Other functions of this IP remain to be elucidated.
D-myo-Inositol-1,3-phosphate (Ins(1,3)P) is a member of the inositol phosphate (InsP) molecular family that play critical roles as small, soluble second messengers in the transmission of cellular signals. The most studied InsP, Ins(1,4,5)P3 is a second messenger produced in cells by phospholipase C (PLC)-mediated hydrolysis of phosphatidylinositol-4,5-biphosphate. Binding of Ins(1,4,5)P3 to its receptor on the endoplasmic reticulum results in opening of the calcium channels and an increase in intracellular calcium. Ins(1,3)P2 can be dephosphorylated to Ins(1)P by inositol polyphosphate 3-phosphatase and further dephosphorylated to inositol by inositol monophosphatase.