- 全部删除
- 您的购物车当前为空
ALDH7A1 (Aldehyde dehydrogenase 7 family, member A1) is a member of subfamily 7 in the aldehyde dehydrogenase family. These enzymes are thought to play a major role in the detoxification of aldehydes generated by alcohol metabolism and lipid peroxidation. Mammalian ALDH7A1 is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. In mammals, ALDH7A1 is known to play a primary role during lysine catabolism through the NAD+-dependent oxidative conversion of aminoadipate semialdehyde (AASA) to its corresponding carboxylic acid, α-aminoadipic acid. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. ALDH7A1 is a novel aldehyde dehydrogenase expressed in multiple subcellular compartments that protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes.
规格 | 价格 | 库存 | 数量 |
---|---|---|---|
50 μg | ¥ 3,820 | 5日内发货 |
生物活性 | Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first. |
产品描述 | ALDH7A1 (Aldehyde dehydrogenase 7 family, member A1) is a member of subfamily 7 in the aldehyde dehydrogenase family. These enzymes are thought to play a major role in the detoxification of aldehydes generated by alcohol metabolism and lipid peroxidation. Mammalian ALDH7A1 is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. In mammals, ALDH7A1 is known to play a primary role during lysine catabolism through the NAD+-dependent oxidative conversion of aminoadipate semialdehyde (AASA) to its corresponding carboxylic acid, α-aminoadipic acid. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. ALDH7A1 is a novel aldehyde dehydrogenase expressed in multiple subcellular compartments that protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes. |
种属 | Human |
表达系统 | E. coli |
标签 | N-His |
蛋白编号 | P49419-2 |
别名 | PDE,EPD,ATQ1,aldehyde dehydrogenase 7 family, member A1 |
蛋白构建 | A DNA sequence encoding the human ALDH7A1 isoform 2 (P49419-2) (Ser 2-Gln 511) was expressed, with a polyhistide tag at the N-terminus. Predicted N terminal: Met |
蛋白纯度 | > 93 % as determined by SDS-PAGE |
分子量 | 56 kDa (predicted); 56 kDa (reducing conditions) |
内毒素 | Please contact us for more information. |
缓冲液 | Supplied as sterile 50 mM Tris, 500 mM NaCl, 20% glycerol, pH 8.0. |
复溶方法 | A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information. |
存储 | It is recommended to store the product under sterile conditions at -20°C to -80°C. Samples are stable for up to 12 months. Please avoid multiple freeze-thaw cycles and store products in aliquots. |
运输方式 | In general, Lyophilized powders are shipping with blue ice. Solutions are shipping with dry ice. |
研究背景 | ALDH7A1 (Aldehyde dehydrogenase 7 family, member A1) is a member of subfamily 7 in the aldehyde dehydrogenase family. These enzymes are thought to play a major role in the detoxification of aldehydes generated by alcohol metabolism and lipid peroxidation. Mammalian ALDH7A1 is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. In mammals, ALDH7A1 is known to play a primary role during lysine catabolism through the NAD+-dependent oxidative conversion of aminoadipate semialdehyde (AASA) to its corresponding carboxylic acid, α-aminoadipic acid. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. ALDH7A1 is a novel aldehyde dehydrogenase expressed in multiple subcellular compartments that protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes. |
版权所有©2015-2024 TargetMol Chemicals Inc.保留所有权利.