购物车
  • 全部删除
  • TargetMol
    您的购物车当前为空

AHSP Protein, Human, Recombinant

产品编号 TMPY-03603

AHSP, also known as ERAF, is a conserved mammalian erythroid protein which belongs to the AHSP family. It is expressed in blood and bone marrow. AHSP facilitates the production of Hemoglobin A by stabilizing free α-globin. It rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ≈1 μm(-1) s(-1) and .2 s(-1), respectively, at pH 7.4 at 22 ℃. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(3) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P3A and P3W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(3) conformer. Both wild-type and Pro(3)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α·AHSP complex (k(AHSP) ≈ .2 s(-1)) is ~1-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers.

AHSP Protein, Human, Recombinant

AHSP Protein, Human, Recombinant

产品编号 TMPY-03603
AHSP, also known as ERAF, is a conserved mammalian erythroid protein which belongs to the AHSP family. It is expressed in blood and bone marrow. AHSP facilitates the production of Hemoglobin A by stabilizing free α-globin. It rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ≈1 μm(-1) s(-1) and .2 s(-1), respectively, at pH 7.4 at 22 ℃. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(3) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P3A and P3W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(3) conformer. Both wild-type and Pro(3)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α·AHSP complex (k(AHSP) ≈ .2 s(-1)) is ~1-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers.
规格价格库存数量
100 μg¥ 5,1005日内发货
大包装 & 定制
加入购物车
实验操作小课堂
查看更多
TargetMol 的所有产品仅用作科学研究或药证申报,不能被用于人体,我们不向个人提供产品和服务。请您遵守承诺用途,不得违反法律法规规定用于任何其他用途。

产品信息

生物活性
Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
产品描述
AHSP, also known as ERAF, is a conserved mammalian erythroid protein which belongs to the AHSP family. It is expressed in blood and bone marrow. AHSP facilitates the production of Hemoglobin A by stabilizing free α-globin. It rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ≈1 μm(-1) s(-1) and .2 s(-1), respectively, at pH 7.4 at 22 ℃. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(3) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P3A and P3W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(3) conformer. Both wild-type and Pro(3)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α·AHSP complex (k(AHSP) ≈ .2 s(-1)) is ~1-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers.
种属
Human
表达系统
E. coli
标签Tag Free
蛋白编号Q9NZD4
别名
α hemoglobin stabilizing protein,ERAF,EDRF,alpha hemoglobin stabilizing protein
蛋白构建
A DNA sequence encoding human ERAF (Q9NZD4) (Met1-Ser102) was expressed. Predicted N terminal: Met
蛋白纯度
> 90 % as determined by SDS-PAGE
分子量11.8 kDa (predicted); 12 kDa (reducing conditions)
内毒素Please contact us for more information.
缓冲液Lyophilized from a solution filtered through a 0.22 μm filter, containing PBS, pH 7.4. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
复溶方法
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
存储
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
运输方式In general, Lyophilized powders are shipping with blue ice.
研究背景
AHSP, also known as ERAF, is a conserved mammalian erythroid protein which belongs to the AHSP family. It is expressed in blood and bone marrow. AHSP facilitates the production of Hemoglobin A by stabilizing free α-globin. It rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ≈1 μm(-1) s(-1) and .2 s(-1), respectively, at pH 7.4 at 22 ℃. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(3) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P3A and P3W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(3) conformer. Both wild-type and Pro(3)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α·AHSP complex (k(AHSP) ≈ .2 s(-1)) is ~1-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers.

计算器

  • 复溶 计算器
  • 重组蛋白稀释 计算器
  • 比活力 计算器

技术支持

请阅读 重组蛋白用户指南 了解更多具体信息.

关键词