PAR2 (1-6) amide is a synthetic peptide agonist of proteinase-activated receptor 2 (PAR2) that corresponds to residues 1-6 of the amino terminal tethered ligand sequence of human PAR2 and residues 37-42 of the full-length sequence.1It binds to NCTC 2544 cells expressing human PAR2 (Ki= 9.64 μM in a radioligand binding assay) and induces calcium mobilization in the same cells (EC50= 0.075 μM).2PAR2 (1-6) amide (100 μM) reduces colony formation of A549 lung cancer cells.1It induces superoxide production and degranulation in isolated human eosinophils when used at a concentration of 500 μM.3PAR2 (1-6) amide (5 μmol kg) induces tear secretion in rats when used in combination with amastatin .4 1.Bohm, S.K., Kong, W., Bromme, D., et al.Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2Biochem. J.314(Pt 3)1009-1016(1996) 2.Kanke, T., Ishiwata, H., Kabeya, M., et al.Binding of a highly potent protease-activated receptor-2 (PAR2) activating peptide, [3H]2-furoyl-LIGRL-NH2, to human PAR2Br. J. Pharmacol.145(2)255-263(2005) 3.Miike, S., McWilliam, A.S., and Kita, H.Trypsin induces activation and inflammatory mediator release from human eosinophils through protease-activated receptor-2J. Immunol.167(11)6615-6622(2001) 4.Nishikawa, H., Kawai, K., Tanaka, M., et al.Protease-activated receptor-2 (PAR-2)-related peptides induce tear secretion in rats: Involvement of PAR-2 and non-PAR-2 mechanismsJ. Pharmacol. Exp. Ther.312(2)324-331(2005)
Terpendole I is a fungal metabolite that has been found in A. yamanashiensis.1 It is a weak inhibitor of acyl-coenzyme A:cholesterol acyltransferase (ACAT; IC50 = 145 μM) and is active against the bacteria B. cereus and B. subtilis (MICs = 100 μg/ml for both) but not S. aureus, P. aeruginosa, or K. pneumoniae (MICs = >200 μg/ml for all) or the fungus C. albicans (MIC = 200 μg/ml).1,2 It is cytotoxic to HeLa cells with an IC50 value of 52.6 μM.3 |1. Tomoda, H., Tabata, N., Yang, D.-J., et al. Terpendoles, novel ACAT inhibitors produced by Albophoma yamanashiensis. III. Production, isolation and structure elucidation of new components. J. Antibiot. (Tokyo) 48(8), 793-804 (1995).|2. Zhao, J.-C., Wang, Y.-L., Zhang, T.-Y., et al. Indole diterpenoids from the endophytic fungus Drechmeria sp. as natural antimicrobial agents. Phytochemistry 148, 21-28 (2018).|3. Nagumo, Y., Motoyama, T., Hayashi, T., et al. Structure-activity relationships of terpendole E and its natural derivatives. ChemistrySelect 2(4), 1533-1536 (2017).
D-DOPA is an enantiomer of the dopamine precursor L-DOPA . It can be converted to L-DOPAviasequential oxidation and transamination, which are mediated by D-amino acid oxidase (DAAO) and DOPA transaminase, respectively, in rat kidney homogenates.1It reduces the number of dopaminergic neurons in primary rat embryonic mesencephalic cultures in a concentration-dependent manner.2Intraventricular administration of D-DOPA (200 μg/animal) increases striatal dopamine levels in rats.3D-DOPA (20 mg/kg, i.p.) induces contralateral turns in a rat model of Parkinson's disease induced by 6-OHDA .4 1.Wu, M., Zhou, X.-J., Konno, R., et al.D-dopa is unidirectionally converted to L-dopa by D-amino acid oxidase, followed by dopa transaminaseClin. Exp. Pharmacol. Physiol.33(11)1042-1046(2006) 2.Ling, Z.-D., Pieri, S.C., and Carvey, P.M.Comparison of the neurotoxicity of dihydroxyphenylalanine stereoisomers in cultured dopamine neuronsClin. Neuropharmacol.19(4)360-365(1996) 3.Karoum, F., Freed, W.J., Chuang, L.-W., et al.D-dopa and L-dopa similarly elevate brain dopamine and produce turning behavior in ratsBrain Res.440(1)190-194(1988) 4.Moses, J., Siddiqui, A., and Silverman, P.B.Sodium benzoate differentially blocks circling induced by D-and L-dopa in the hemi-parkinsonian ratNeurosci. Lett.218(3)145-148(1996)