B18R is a type I interferon (IFN)-binding protein, which is encoded by the B18R open reading frame in the WR (Western Reserve) strain of vaccinia virus. It is also known as B19R in the Copenhagen strain of Vaccinia. B18R exists in a soluble and a membrane-bound form. As a type I IFN receptor, B18R has a broad species specificity. It has high affinity for human IFN-alpha and also binds rabbit, bovine, rat, pig, and mouse IFN-alpha and IFN-beta. It has been shown that secreted B18R binds to uninfected and infected cells. It presents at the cell surface and protects cells from the antiviral state induced by IFN-alpha and IFN-beta. Binding of soluble recombinant B18R protects cultured cells from IFN and allows vaccinia virus replication.
IFN gamma, also known as IFNG, is a secreted protein that belongs to the type II interferon family. IFN gamma is produced predominantly by natural killer and natural killer T cells as part of the innate immune response, and by CD4 and CD8 cytotoxic T lymphocyte effector T cells once antigen-specific immunity develops. IFN gamma has antiviral, immunoregulatory, and anti-tumor properties. IFNG, in addition to having antiviral activity, has important immunoregulatory functions, it is a potent activator of macrophages and has antiproliferative effects on transformed cells and it can potentiate the antiviral and antitumor effects of the type I interferons. The IFNG monomer consists of a core of six α-helices and an extended unfolded sequence in the C-terminal region. IFN gamma is critical for innate and adaptive immunity against viral and intracellular bacterial infections and tumor control. Aberrant IFN gamma expression is associated with some autoinflammatory and autoimmune diseases. The importance of IFN gamma in the immune system stems in part from its ability to inhibit viral replication directly, and most importantly from its immunostimulatory and immunomodulatory effects. IFNG also promotes NK cell activity.
Interferon‑alpha beta receptor 1 (IFN‑ alpha beta R1), also known as IFNAR1, are present in all tissues and even on the surface of most IFN-resistant cells. Isoform 1, isoform 2 and isoform 3 are expressed in the IFN-alpha sensitive myeloma cell line U266B1. Isoform 2 and isoform 3 are expressed in the IFN-alpha resistant myeloma cell line U266R. Isoform 1 is not expressed in IFN-alpha resistant myeloma cell line U266R. It interacts with STAT1 and STAT2, the interaction requires its phosphorylation at Tyr-466. It also interacts with FBXW11, the substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex.
Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q R site, but edits efficiently at the R G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2 PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication.
Cystatin-S, also known as Cystatin-4, Salivary acidic protein 1, Cystatin-SA-III and CST4, is a secreted protein which belongs to thecystatin family. Cystatin-4 CST4 is expressed in submandibular and sublingual saliva but not in parotid saliva (at protein level). It is also expressed in saliva, tears, urine and seminal fluid. The cystatin superfamily encompasses proteins that contain multiple cystatin-like sequences. Some of the members are active cysteine protease inhibitors, while others have lost or perhaps never acquired this inhibitory activity. There are three inhibitory families in the superfamily, including the type 1 cystatins (stefins), type 2 cystatins and the kininogens. The type 2 cystatin proteins are a class of cysteine proteinase inhibitors found in a variety of human fluids and secretions. Cystatin-4 CST4 strongly inhibits papain and ficin, partially inhibits stem bromelain and bovine cathepsin C, but does not inhibit porcine cathepsin B or clostripain. Papain is inhibited non-competitively. Cystatin-4 CST4 is an S-type cystatin, based on its high level of expression in saliva, tears and seminal plasma. The specific role in these fluids is unclear but antibacterial and antiviral activity is present, consistent with a protective function.
Produced by lymphocytes activated by specific antigens or mitogens. IFN-gamma, in addition to having antiviral activity, has important immunoregulatory functions. It is a potent activator of macrophages, it has antiproliferative effects on transformed cells and it can potentiate the antiviral and antitumor effects of the type I interferons. IFN gamma Protein, Marmota monax, Recombinant (His) is expressed in yeast with N-6xHis tag. The predicted molecular weight is 18.6 kDa and the accession number is O35735.
E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2. Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination. Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes. A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B ('Thr-187' phosphorylated-form), thereby promoting its degradation by the proteasome. Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling. Negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway. Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages. Plays a role in the regulation of the cell cycle progression. Enhances the decapping activity of DCP2. Exists as a ribonucleoprotein particle present in all mammalian cells studied and composed of a single polypeptide and one of four small RNA molecules. At least two isoforms are present in nucleated and red blood cells, and tissue specific differences in RO SSA proteins have been identified. The common feature of these proteins is their ability to bind HY RNAs.2. Involved in the regulation of innate immunity and the inflammatory response in response to IFNG IFN-gamma. Organizes autophagic machinery by serving as a platform for the assembly of ULK1, Beclin 1 BECN1 and ATG8 family members and recognizes specific autophagy targets, thus coordinating target recognition with assembly of the autophagic apparatus and initiation of autophagy. Acts as an autophagy receptor for the degradation of IRF3, hence attenuating type I interferon (IFN)-dependent immune responses. Represses the innate antiviral response by facilitating the formation of the NMI-IFI35 complex through 'Lys-63'-linked ubiquitination of NMI.
Prevents the establishment of the cellular antiviral state by inhibiting TRIM25-mediated DDX58 ubiquitination, which normally triggers the antiviral transduction signal that leads to the activation of type I IFN genes by transcription factors IRF3 and IRF7. Prevents human EIF2AK2 PKR activation, either by binding double-strand RNA, or by interacting directly with EIF2AK2 PKR. This function may be important at the very beginning of the infection, when NS1 is mainly present in the cytoplasm. Also binds poly(A) and U6 snRNA.; Inhibits post-transcriptional processing of cellular pre-mRNA, by binding and inhibiting two cellular proteins that are required for the 3'-end processing of cellular pre-mRNAs: the 30 kDa cleavage and polyadenylation specificity factor CPSF4 and the poly(A)-binding protein 2 PABPN1. In turn, unprocessed 3' end pre-mRNAs accumulate in the host nucleus and are no longer exported to the cytoplasm. Cellular protein synthesis is thereby shut off very early after virus infection. Viral protein synthesis is not affected by the inhibition of the cellular 3' end processing machinery because the poly(A) tails of viral mRNAs are produced by the viral polymerase through a stuttering mechanism.
Mouse Protein Tnfrsf14, is a type I transmembrane protein belonging to the TNF receptor superfamily. It is tumor necrosis factor receptor superfamily member 14 and expressed on the surface of T cells during the resting state. Interaction of HVEM with TNF family member LIGHT co-stimulates T cells and promotes inflammation. HVEM also triggers inhibitory signaling cascade in effector T (Teff) cells and regulatory T cells (Tregs) as a ligand of B and T lymphocyte attenuator. Tnfrsf14 is detected in peripheral blood T cells, B cells, monocytes and in various tissues enriched in lymphoid cells. It has demonstrated that HVEM Ig is able to exert a significant antiviral effect against HSV-1 infection in vivo.
STAT1 is a member of the STAT protein family. In response to cytokines and growth factors, STAT family members are phosphorylated by the receptor-associated kinases, and then form homo- or heterodimers that translocate to the cell nucleus where they act as transcription activators. STAT1 can be activated by various ligands, including interferon-alpha, interferon-gamma, EGF, PDGF and IL6. It is a signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG SCF and other cytokines and growth factors. The phosphorylated STATs dimerize, associate with ISGF3G IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus. ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of interferon-stimulated genes, which drive the cell in an antiviral state. In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated. It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state. STAT1 becomes activated in response to KITLG SCF and KIT signaling and may mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4. Defects in STAT1 can cause STAT1 deficiency complete and familial candidiasis type 7.
Replication of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) requires proteolytic processing of the replicase polyprotein by two viral cysteine proteases, a chymotrypsin-like protease (3CLpro) and a papain-like protease (PLpro). These proteases are important targets for development of antiviral drugs that would inhibit viral replication and reduce mortality associated with outbreaks of SARS-CoV. PLpro is a cysteine protease located within the non-structural protein 3 (NS3) section of the viral polypeptide. PLPro activity is required to process the viral polyprotein into functional, mature subunits; specifically, PLPro cleaves a site at the amino-terminus of the viral replicase region. In addition to its role in viral protein maturation, PLPro possesses a deubiquitinating and deISGylating activity. In vivo, this protease antagonizes innate immunity by inhibiting IRF3-induced production of type I interferons.
Produced by lymphocytes activated by specific antigens or mitogens. IFN-gamma, in addition to having antiviral activity, has important immunoregulatory functions. It is a potent activator of macrophages, it has antiproliferative effects on transformed cells and it can potentiate the antiviral and antitumor effects of the type I interferons. IFN gamma Protein, Chicken, Recombinant (GST) is expressed in E. coli expression system with N-GST tag. The predicted molecular weight is 43.7 kDa and the accession number is P49708.
E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2. Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination. Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes. A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B ('Thr-187' phosphorylated-form), thereby promoting its degradation by the proteasome. Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling. Negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway. Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages. Plays a role in the regulation of the cell cycle progression. Enhances the decapping activity of DCP2. Exists as a ribonucleoprotein particle present in all mammalian cells studied and composed of a single polypeptide and one of four small RNA molecules. At least two isoforms are present in nucleated and red blood cells, and tissue specific differences in RO SSA proteins have been identified. The common feature of these proteins is their ability to bind HY RNAs.2. Involved in the regulation of innate immunity and the inflammatory response in response to IFNG IFN-gamma. Organizes autophagic machinery by serving as a platform for the assembly of ULK1, Beclin 1 BECN1 and ATG8 family members and recognizes specific autophagy targets, thus coordinating target recognition with assembly of the autophagic apparatus and initiation of autophagy. Acts as an autophagy receptor for the degradation of IRF3, hence attenuating type I interferon (IFN)-dependent immune responses. Represses the innate antiviral response by facilitating the formation of the NMI-IFI35 complex through 'Lys-63'-linked ubiquitination of NMI.