9(S),12(S),13(S)-TriHOME is a linoleic acid-derived oxylipin that has diverse biological activities.1,2,3,4It has been found in various plants and is produced in human eosinophils in a 15-lipoxygenase-dependent, soluble epoxide hydrolase-independent manner.1,59(S),12(S)13(S)-TriHOME inhibits antigen-induced β-hexosaminidase release from RBL-2H3 mast cells (IC50= 28.7 μg ml).2It inhibits LPS-induced nitric oxide (NO) production in BV-2 microglia (IC50= 40.95 μM).3In vivo, 9(S),12(S),13(S)-TriHOME (1 g animal) enhances the antiviral IgA and IgG antibody responses induced by a nasal influenza hemagglutinin (HA) vaccine by 5.2- and 2-fold, respectively, in mice.4 1.Hamberg, M., and Hamberg, G.Peroxygenase-catalyzed fatty acid epoxidation in cereal seeds: Sequential oxidation of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acidPlant Physiol.110(3)807-815(1996) 2.Hong, S.S., and Oh, J.S.Inhibitors of antigen-induced degranulation of RBL-2H3 cells isolated from wheat branJ. Korean Soc. Appl. Biol. Chem.5569-74(2012) 3.Kim, C.S., Kwon, O.W., Kim, S.Y., et al.Five new oxylipins from Chaenomeles sinensisLipids49(11)1151-1159(2014) 4.Shirahata, T., Sunazuka, T., Yoshida, K., et al.Total synthesis, elucidation of absolute stereochemistry, and adjuvant activity of trihydroxy fatty acidsTetrahedron62(40)9483-9496(2006) 5.Fuchs, D., Tang, X., Johnsson, A.-K., et al.Eosinophils synthesize trihydroxyoctadecenoic acids (TriHOMEs) via a 15-lipoxygenase dependent processBiochim. Biophys. Acta Mol. Cell Biol. Lipids1865(4)158611(2020)
Zonisamide-13C2,15N is intended for use as an internal standard for the quantification of zonisamide by GC- or LC-MS. Zonisamide is an antiepileptic agent.1 It selectively inhibits the repeated firing of sodium channels (IC50 = 2 μg ml) in mouse embryo spinal cord neurons and inhibits spontaneous channel firing when used at concentrations greater than 10 μg ml.2 In rat cerebral cortex neurons, zonisamide (1-1,000 μM) inhibits T-type calcium channels with a maximum reduction of 60% of the calcium current.3 Zonisamide inhibits H. pylori recombinant carbonic anhydrase (CA) and the human CA isoforms I, II, and V with Ki values of 218, 56, 35, and 21 nM, respectively.4,5 In mice, it has anticonvulsant activity against maximal electroshock seizure (MES) and pentylenetetrazole-induced maximal, but not minimal, seizures (ED50s = 19.6, 9.3, and >500 mg kg, respectively). Zonisamide (40 mg kg, p.o.) prevents MPTP-induced decreases in the levels of dopamine , but not homovanillic acid or dihydroxyphenyl acetic acid , and increases MPTP-induced decreases in the dopamine turnover rate in mouse striatum in a model of Parkinson's disease.6 Formulations containing zonisamide have been used in the treatment of partial seizures in adults with epilepsy. |1. Masuda, Y., Ishizaki, M., and Shimizu, M. Zonisamide: Pharmacology and clinical efficacy in epilepsy. CNS Drug Rev. 4(4), 341-360 (1998).|2. Rock, D.M., Macdonald, R.L., and Taylor, C.P. Blockade of sustained repetitive action potentials in cultured spinal cord neurons by zonisamide (AD 810, CI 912), a novel anticonvulsant. Epilepsy Res. 3(2), 138-143 (1989).|3. Suzuki, S., Kawakami, K., Nishimura, S., et al. Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res. 12(1), 21-27 (1992).|4. Nishimori, I., Vullo, D., Minakuchi, T., et al. Carbonic anhydrase inhibitors: Cloning and sulfonamide inhibition studies of a carboxyterminal truncated α-carbonic anhydrase from Helicobacter pylori. Bioorg. Med. Chem. Lett. 16(8), 2182-2188 (2006).|5. De Simone, G., Di Fiore, A., Menchise, V., et al. Carbonic anhydrase inhibitors. Zonisamide is an effective inhibitor of the cytosolic isozyme II and mitochondrial isozyme V: Solution and X-ray crystallographic studies. Bioorg. Med. Chem. Lett. 15(9), 2315-2320 (2005).|6. Yabe, H., Choudhury, M.E., Kubo, M., et al. Zonisamide increases dopamine turnover in the striatum of mice and common marmosets treated with MPTP. J. Pharmacol. Sci. 110(1), 64-68 (2009).
Collinin is a coumarin that has been found in Z. schinifolium and has diverse biological activities.1,2,3,4 It is active against drug-susceptible and -resistant strains of M. tuberculosis (MIC50s = 3.13-6.25 μg/ml).1 Collinin inhibits LPS-induced nitric oxide (NO) production (IC50 = 5.9 μM) and reduces COX-2 protein levels in RAW 264.7 cells.2 It completely inhibits aggregation of isolated rabbit platelets induced by arachidonic acid , collagen, or platelet activating factor (PAF) when used at a concentration of 100 μM.3 Dietary administration of collinin (0.05% w/w) reduces the number of mice with tumors and the number of tumors per mouse in a mouse model of colitis-related carcinogenesis.4 |1. Kim, S., Seo, H., Al Mahmud, H., et al. In vitro activity of collinin isolated from the leaves of Zanthoxylum schinifolium against multidrug- and extensively drug-resistant Mycobacterium tuberculosis. Phytomedicine 46, 104-110 (2018).|2. Nguyen, P.-H., Zhao, B.T., Kim, O., et al. Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity. J. Nat. Med. 70(2), 276-281 (2016).|3. I.S., C., Lin, Y.C., Tsai, I.L., et al. Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry 39(5), 1091-1097 (1995).|4. Kohno, H., Suzuki, R., Curini, M., et al. Dietary administration with prenyloxycoumarins, auraptene and collinin, inhibits colitis-related colon carcinogenesis in mice. Int. J. Cancer 118(12), 2936-2942 (2006).