购物车
  • 全部删除
  • TargetMol
    您的购物车当前为空

USP5 Protein, Human, Recombinant (His)

产品编号 TMPY-02211

Ubiquitin carboxyl-terminal hydrolase 5, also known as Deubiquitinating enzyme 5, Isopeptidase T, Ubiquitin thiolesterase 5, Ubiquitin-specific-processing protease 5, ISOT and USP5, is a member of the peptidase C19 family. USP5 contains 2 UBA domains and one UBP-type zinc finger. The UBP-type zinc finger domain interacts selectively with an unmodified C-terminus of the proximal ubiquitin. Both UBA domains are involved in polyubiquitin recognition. The UBP-type zinc finger domain crystallizes as a dimer linked by a disulfide bond between the Cys-195 residues of both molecules, but there is no evidence that the full-length USP5 exists as a dimer. USP5 cleaves linear and branched multiubiquitin polymers with a marked preference for branched polymers. USP5 is involved in unanchored 'Lys-48'-linked polyubiquitin disassembly. It binds linear and 'Lys-63'-linked polyubiquitin with a lower affinity. Knock-down of USP5 causes the accumulation of p53/TP53 and an increase in p53/TP53 transcriptional activity because the unanchored polyubiquitin that accumulates is able to compete with ubiquitinated p53/TP53 but not with MDM2 for proteasomal recognition.

USP5 Protein, Human, Recombinant (His)

USP5 Protein, Human, Recombinant (His)

产品编号 TMPY-02211
Ubiquitin carboxyl-terminal hydrolase 5, also known as Deubiquitinating enzyme 5, Isopeptidase T, Ubiquitin thiolesterase 5, Ubiquitin-specific-processing protease 5, ISOT and USP5, is a member of the peptidase C19 family. USP5 contains 2 UBA domains and one UBP-type zinc finger. The UBP-type zinc finger domain interacts selectively with an unmodified C-terminus of the proximal ubiquitin. Both UBA domains are involved in polyubiquitin recognition. The UBP-type zinc finger domain crystallizes as a dimer linked by a disulfide bond between the Cys-195 residues of both molecules, but there is no evidence that the full-length USP5 exists as a dimer. USP5 cleaves linear and branched multiubiquitin polymers with a marked preference for branched polymers. USP5 is involved in unanchored 'Lys-48'-linked polyubiquitin disassembly. It binds linear and 'Lys-63'-linked polyubiquitin with a lower affinity. Knock-down of USP5 causes the accumulation of p53/TP53 and an increase in p53/TP53 transcriptional activity because the unanchored polyubiquitin that accumulates is able to compete with ubiquitinated p53/TP53 but not with MDM2 for proteasomal recognition.
规格价格库存数量
100 μg¥ 3,1705日内发货
大包装 & 定制
加入购物车
实验操作小课堂
常见问题解答
查看更多
TargetMol 的所有产品仅用作科学研究或药证申报,不能被用于人体,我们不向个人提供产品和服务。请您遵守承诺用途,不得违反法律法规规定用于任何其他用途。

产品信息

生物活性
Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
产品描述
Ubiquitin carboxyl-terminal hydrolase 5, also known as Deubiquitinating enzyme 5, Isopeptidase T, Ubiquitin thiolesterase 5, Ubiquitin-specific-processing protease 5, ISOT and USP5, is a member of the peptidase C19 family. USP5 contains 2 UBA domains and one UBP-type zinc finger. The UBP-type zinc finger domain interacts selectively with an unmodified C-terminus of the proximal ubiquitin. Both UBA domains are involved in polyubiquitin recognition. The UBP-type zinc finger domain crystallizes as a dimer linked by a disulfide bond between the Cys-195 residues of both molecules, but there is no evidence that the full-length USP5 exists as a dimer. USP5 cleaves linear and branched multiubiquitin polymers with a marked preference for branched polymers. USP5 is involved in unanchored 'Lys-48'-linked polyubiquitin disassembly. It binds linear and 'Lys-63'-linked polyubiquitin with a lower affinity. Knock-down of USP5 causes the accumulation of p53/TP53 and an increase in p53/TP53 transcriptional activity because the unanchored polyubiquitin that accumulates is able to compete with ubiquitinated p53/TP53 but not with MDM2 for proteasomal recognition.
种属
Human
表达系统
Baculovirus Insect Cells
标签C-His
蛋白编号P45974-2
别名
ubiquitin specific peptidase 5 (isopeptidase T),ISOT
蛋白构建
A DNA sequence encoding the human USP5 isoform short (P45974-2) (Met 1-Ser 835) was fused with a polyhistidine tag at the C-terminus. Predicted N terminal: Met 1
蛋白纯度
> 90 % as determined by SDS-PAGE
分子量94.7 kDa (predicted); 100 kDa (reducing conditions)
内毒素< 1.0 EU/μg of the protein as determined by the LAL method.
缓冲液Lyophilized from a solution filtered through a 0.22 μm filter, containing 50 mM Tris, 100 mM NaCl, pH 7.4. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
复溶方法
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
存储
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
运输方式In general, Lyophilized powders are shipping with blue ice.
研究背景
Ubiquitin carboxyl-terminal hydrolase 5, also known as Deubiquitinating enzyme 5, Isopeptidase T, Ubiquitin thiolesterase 5, Ubiquitin-specific-processing protease 5, ISOT and USP5, is a member of the peptidase C19 family. USP5 contains 2 UBA domains and one UBP-type zinc finger. The UBP-type zinc finger domain interacts selectively with an unmodified C-terminus of the proximal ubiquitin. Both UBA domains are involved in polyubiquitin recognition. The UBP-type zinc finger domain crystallizes as a dimer linked by a disulfide bond between the Cys-195 residues of both molecules, but there is no evidence that the full-length USP5 exists as a dimer. USP5 cleaves linear and branched multiubiquitin polymers with a marked preference for branched polymers. USP5 is involved in unanchored 'Lys-48'-linked polyubiquitin disassembly. It binds linear and 'Lys-63'-linked polyubiquitin with a lower affinity. Knock-down of USP5 causes the accumulation of p53/TP53 and an increase in p53/TP53 transcriptional activity because the unanchored polyubiquitin that accumulates is able to compete with ubiquitinated p53/TP53 but not with MDM2 for proteasomal recognition.

计算器

  • 复溶 计算器
  • 重组蛋白稀释 计算器
  • 比活力 计算器

技术支持

请阅读 重组蛋白用户指南 了解更多具体信息.

关键词