- 全部删除
- 您的购物车当前为空
Matrix metalloproteinases are a family of zinc and calcium dependent endopeptidases with the combined ability to degrade all the components of the extracellular matrix. MMP-9 (gelatinase B) can degrade a broad range of substrates including gelatin, collagen types IV and V, elastin and proteoglycan core protein. It is believed to act synergistically with interstitial collagenase (MMP1) in the degradation of fibrillar collagens as it degrades their denatured gelatin forms. MMP-9 is produced by keratinocytes, monocytes, macrophages and PMN leukocytes. MMP-9 is present in most cases of inflammatory responses. Structurally, MMP-9 may be divided into five distinct domains: a prodomain which is cleaved upon activation, a gelatinbinding domain consisting of three contiguous fibronectin type II units, a catalytic domain containing the zinc binding site, a prolinerich linker region, and a carboxyl terminal hemopexinlike domain.
规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 μg | ¥ 1,170 | 5日内发货 | |
50 μg | ¥ 3,470 | 5日内发货 | |
500 μg | ¥ 12,100 | 5日内发货 | |
1 mg | ¥ 18,900 | 5日内发货 |
生物活性 | Activity has not been tested. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first. |
产品描述 | Matrix metalloproteinases are a family of zinc and calcium dependent endopeptidases with the combined ability to degrade all the components of the extracellular matrix. MMP-9 (gelatinase B) can degrade a broad range of substrates including gelatin, collagen types IV and V, elastin and proteoglycan core protein. It is believed to act synergistically with interstitial collagenase (MMP1) in the degradation of fibrillar collagens as it degrades their denatured gelatin forms. MMP-9 is produced by keratinocytes, monocytes, macrophages and PMN leukocytes. MMP-9 is present in most cases of inflammatory responses. Structurally, MMP-9 may be divided into five distinct domains: a prodomain which is cleaved upon activation, a gelatinbinding domain consisting of three contiguous fibronectin type II units, a catalytic domain containing the zinc binding site, a prolinerich linker region, and a carboxyl terminal hemopexinlike domain. |
种属 | Mouse |
表达系统 | HEK293 Cells |
标签 | C-10xHis |
蛋白编号 | P41245 |
别名 | MMP-9,Matrix metalloproteinase-9,GELB,Gelatinase B,92 kDa type IV collagenase,92 kDa gelatinase |
氨基酸序列 | Ala20-Pro730 |
蛋白构建 | Ala20-Pro730. The proenzyme needs to be activated by APMA for an activated form. |
蛋白纯度 | Greater than 95% as determined by reducing SDS-PAGE. (QC verified) |
分子量 | 100 KDa (reducing condition) |
内毒素 | < 0.1 ng/µg (1 EU/µg) as determined by LAL test. |
缓冲液 | Supplied as a 0.2 μm filtered solution of 20 mM Tris-HCl, 150 mM NaCl, 20% Glycerol, pH7.5. |
存储 | Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots. |
运输方式 | In general, Lyophilized powders are shipping with blue ice. Solutions are shipping with dry ice. |
研究背景 | Matrix metalloproteinases are a family of zinc and calcium dependent endopeptidases with the combined ability to degrade all the components of the extracellular matrix. MMP-9 (gelatinase B) can degrade a broad range of substrates including gelatin, collagen types IV and V, elastin and proteoglycan core protein. It is believed to act synergistically with interstitial collagenase (MMP1) in the degradation of fibrillar collagens as it degrades their denatured gelatin forms. MMP-9 is produced by keratinocytes, monocytes, macrophages and PMN leukocytes. MMP-9 is present in most cases of inflammatory responses. Structurally, MMP-9 may be divided into five distinct domains: a prodomain which is cleaved upon activation, a gelatinbinding domain consisting of three contiguous fibronectin type II units, a catalytic domain containing the zinc binding site, a prolinerich linker region, and a carboxyl terminal hemopexinlike domain. |
版权所有©2015-2024 TargetMol Chemicals Inc.保留所有权利.