购物车
  • 全部删除
  • TargetMol
    您的购物车当前为空

GLO1 Protein, Mouse, Recombinant (His)

产品编号 TMPY-01618

Lactoylglutathione lyase, also known as Methylglyoxalase, Aldoketomutase, Glyoxalase I, Ketone-aldehyde mutase, S-D-lactoylglutathione methylglyoxal lyase and GLO1, is a member of the glyoxalase I family. GLO1 / Glyoxalase I is a ubiquitous cellular defense enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis. Accumulative evidence suggests an important role of GLO1 expression in protection against methylglyoxal-dependent protein adduction and cellular damage associated with diabetes, cancer, and chronological aging. GLO1 / Glyoxalase I has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. GLO1 / Glyoxalase I catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. GLO1 / Glyoxalase I exists in three separable isoforms which originate from two alleles in the genome. These correspond to two homodimers and one heterodimer composed of two subunits showing different electrophoretic properties. GLO1 upregulation may play a functional role in glycolytic adaptations of cancer cells.

GLO1 Protein, Mouse, Recombinant (His)

GLO1 Protein, Mouse, Recombinant (His)

产品编号 TMPY-01618
Lactoylglutathione lyase, also known as Methylglyoxalase, Aldoketomutase, Glyoxalase I, Ketone-aldehyde mutase, S-D-lactoylglutathione methylglyoxal lyase and GLO1, is a member of the glyoxalase I family. GLO1 / Glyoxalase I is a ubiquitous cellular defense enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis. Accumulative evidence suggests an important role of GLO1 expression in protection against methylglyoxal-dependent protein adduction and cellular damage associated with diabetes, cancer, and chronological aging. GLO1 / Glyoxalase I has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. GLO1 / Glyoxalase I catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. GLO1 / Glyoxalase I exists in three separable isoforms which originate from two alleles in the genome. These correspond to two homodimers and one heterodimer composed of two subunits showing different electrophoretic properties. GLO1 upregulation may play a functional role in glycolytic adaptations of cancer cells.
规格价格库存数量
100 μg¥ 4,4605日内发货
大包装 & 定制
加入购物车
实验操作小课堂
查看更多
TargetMol 的所有产品仅用作科学研究或药证申报,不能被用于人体,我们不向个人提供产品和服务。请您遵守承诺用途,不得违反法律法规规定用于任何其他用途。

产品信息

生物活性
Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
产品描述
Lactoylglutathione lyase, also known as Methylglyoxalase, Aldoketomutase, Glyoxalase I, Ketone-aldehyde mutase, S-D-lactoylglutathione methylglyoxal lyase and GLO1, is a member of the glyoxalase I family. GLO1 / Glyoxalase I is a ubiquitous cellular defense enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis. Accumulative evidence suggests an important role of GLO1 expression in protection against methylglyoxal-dependent protein adduction and cellular damage associated with diabetes, cancer, and chronological aging. GLO1 / Glyoxalase I has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. GLO1 / Glyoxalase I catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. GLO1 / Glyoxalase I exists in three separable isoforms which originate from two alleles in the genome. These correspond to two homodimers and one heterodimer composed of two subunits showing different electrophoretic properties. GLO1 upregulation may play a functional role in glycolytic adaptations of cancer cells.
种属
Mouse
表达系统
E. coli
标签N-His
蛋白编号A5GZX3
别名
Qglo,glyoxalase I,GLY1,Glo1-s,Glo-1s,Glo1-r,Glo-1r,Glo-1,AW550643,2510049H23Rik,1110008E19Rik,0610009E22Rik
蛋白构建
A DNA sequence encoding the mouse GLO1 (NP_079650.3) (Ala 2-Ile 184) was expressed, with a polyhistide tag at the N-terminus. Predicted N terminal: Met
蛋白纯度
> 85 % as determined by SDS-PAGE
分子量21.6 kDa (predicted); 25 and 48 kDa (reducing conditions)
内毒素Please contact us for more information.
缓冲液Lyophilized from a solution filtered through a 0.22 μm filter, containing PBS, pH 7.4. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
复溶方法
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
存储
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
运输方式In general, Lyophilized powders are shipping with blue ice.
研究背景
Lactoylglutathione lyase, also known as Methylglyoxalase, Aldoketomutase, Glyoxalase I, Ketone-aldehyde mutase, S-D-lactoylglutathione methylglyoxal lyase and GLO1, is a member of the glyoxalase I family. GLO1 / Glyoxalase I is a ubiquitous cellular defense enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis. Accumulative evidence suggests an important role of GLO1 expression in protection against methylglyoxal-dependent protein adduction and cellular damage associated with diabetes, cancer, and chronological aging. GLO1 / Glyoxalase I has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. GLO1 / Glyoxalase I catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. GLO1 / Glyoxalase I exists in three separable isoforms which originate from two alleles in the genome. These correspond to two homodimers and one heterodimer composed of two subunits showing different electrophoretic properties. GLO1 upregulation may play a functional role in glycolytic adaptations of cancer cells.

计算器

  • 复溶 计算器
  • 重组蛋白稀释 计算器
  • 比活力 计算器

技术支持

请阅读 重组蛋白用户指南 了解更多具体信息.

关键词