购物车
  • 全部删除
  • TargetMol
    您的购物车当前为空

ATP1B4 Protein, Human, Recombinant (His)

产品编号 TMPY-06599

ATP1B4 is a member of the X(+)/potassium ATPases subunit beta family. It is highly expressed in skeletal muscle and at a lower level in heart. ATP1B4 gene can be found in all vertebrate genomes sequenced to date. However, this gene has undergone a change in function in placental mammals compared to other species. Specifically, in fish, avian, and amphibian species, this gene encodes plasma membrane-bound beta-subunits of Na, K-ATPase. In placental mammals, the encoded protein interacts with the nuclear transcriptional coregulator SKIP and may be involved in the regulation of TGF-beta signaling. ATP1B4 may act as a transcriptional coregulator during muscle development through its interaction with SNW1. Na+, K+-ATPase is an important regulator of intracellular electrolyte levels in most mammalian cells. It is a Mg2+-dependent transport pump responsible for maintaining the low intracellular Na+:K+ ratio that is essential for cell homeostasis and physiological function. It catalyzes the active uptake of K+ and extrusion of Na+ at the expense of hydrolyzing ATP with a stoichiometry of 3 Na+ for 2 K+. ATP1B4 has lost its ancestral function as a Na,K-ATPase beta-subunit.

ATP1B4 Protein, Human, Recombinant (His)

ATP1B4 Protein, Human, Recombinant (His)

产品编号 TMPY-06599
ATP1B4 is a member of the X(+)/potassium ATPases subunit beta family. It is highly expressed in skeletal muscle and at a lower level in heart. ATP1B4 gene can be found in all vertebrate genomes sequenced to date. However, this gene has undergone a change in function in placental mammals compared to other species. Specifically, in fish, avian, and amphibian species, this gene encodes plasma membrane-bound beta-subunits of Na, K-ATPase. In placental mammals, the encoded protein interacts with the nuclear transcriptional coregulator SKIP and may be involved in the regulation of TGF-beta signaling. ATP1B4 may act as a transcriptional coregulator during muscle development through its interaction with SNW1. Na+, K+-ATPase is an important regulator of intracellular electrolyte levels in most mammalian cells. It is a Mg2+-dependent transport pump responsible for maintaining the low intracellular Na+:K+ ratio that is essential for cell homeostasis and physiological function. It catalyzes the active uptake of K+ and extrusion of Na+ at the expense of hydrolyzing ATP with a stoichiometry of 3 Na+ for 2 K+. ATP1B4 has lost its ancestral function as a Na,K-ATPase beta-subunit.
规格价格库存数量
100 μg¥ 3,8205日内发货
大包装 & 定制
加入购物车
实验操作小课堂
常见问题解答
查看更多
TargetMol 的所有产品仅用作科学研究或药证申报,不能被用于人体,我们不向个人提供产品和服务。请您遵守承诺用途,不得违反法律法规规定用于任何其他用途。

产品信息

生物活性
Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
产品描述
ATP1B4 is a member of the X(+)/potassium ATPases subunit beta family. It is highly expressed in skeletal muscle and at a lower level in heart. ATP1B4 gene can be found in all vertebrate genomes sequenced to date. However, this gene has undergone a change in function in placental mammals compared to other species. Specifically, in fish, avian, and amphibian species, this gene encodes plasma membrane-bound beta-subunits of Na, K-ATPase. In placental mammals, the encoded protein interacts with the nuclear transcriptional coregulator SKIP and may be involved in the regulation of TGF-beta signaling. ATP1B4 may act as a transcriptional coregulator during muscle development through its interaction with SNW1. Na+, K+-ATPase is an important regulator of intracellular electrolyte levels in most mammalian cells. It is a Mg2+-dependent transport pump responsible for maintaining the low intracellular Na+:K+ ratio that is essential for cell homeostasis and physiological function. It catalyzes the active uptake of K+ and extrusion of Na+ at the expense of hydrolyzing ATP with a stoichiometry of 3 Na+ for 2 K+. ATP1B4 has lost its ancestral function as a Na,K-ATPase beta-subunit.
种属
Human
表达系统
E. coli
标签N-His
蛋白编号Q9UN42-1
别名
ATPase, Na+/K+ transporting, β 4 polypeptide,ATPase, Na+/K+ transporting, beta 4 polypeptide
蛋白构建
A DNA sequence encoding the human ATP1B4 (Q9UN42-1) (Tyr132-Thr357) was expressed with a polyhistidine tag at the N-terminus. Predicted N terminal: Met
蛋白纯度
> 95 % as determined by SDS-PAGE
分子量27.35 kDa (predicted)
内毒素< 1.0 EU/μg of the protein as determined by the LAL method.
缓冲液Lyophilized from a solution filtered through a 0.22 μm filter, containing 20 mM Tris, pH8.0.Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
复溶方法
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
存储
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
运输方式In general, Lyophilized powders are shipping with blue ice.
研究背景
ATP1B4 is a member of the X(+)/potassium ATPases subunit beta family. It is highly expressed in skeletal muscle and at a lower level in heart. ATP1B4 gene can be found in all vertebrate genomes sequenced to date. However, this gene has undergone a change in function in placental mammals compared to other species. Specifically, in fish, avian, and amphibian species, this gene encodes plasma membrane-bound beta-subunits of Na, K-ATPase. In placental mammals, the encoded protein interacts with the nuclear transcriptional coregulator SKIP and may be involved in the regulation of TGF-beta signaling. ATP1B4 may act as a transcriptional coregulator during muscle development through its interaction with SNW1. Na+, K+-ATPase is an important regulator of intracellular electrolyte levels in most mammalian cells. It is a Mg2+-dependent transport pump responsible for maintaining the low intracellular Na+:K+ ratio that is essential for cell homeostasis and physiological function. It catalyzes the active uptake of K+ and extrusion of Na+ at the expense of hydrolyzing ATP with a stoichiometry of 3 Na+ for 2 K+. ATP1B4 has lost its ancestral function as a Na,K-ATPase beta-subunit.

计算器

  • 复溶 计算器
  • 重组蛋白稀释 计算器
  • 比活力 计算器

技术支持

请阅读 重组蛋白用户指南 了解更多具体信息.

关键词